Pular para o conteúdo

Conheça Walt Disney World

Queue (abstract data type)

Representation of a FIFO Queue

In computer science, a queue (play /ˈkjuː/ KEW) is a particular kind of abstract data type or collection in which the entities in the collection are kept in order and the principal (or only) operations on the collection are the addition of entities to the rear terminal position and removal of entities from the front terminal position. This makes the queue a First-In-First-Out (FIFO) data structure. In a FIFO data structure, the first element added to the queue will be the first one to be removed. This is equivalent to the requirement that once an element is added, all elements that were added before have to be removed before the new element can be invoked. A queue is an example of a linear data structure.

Queues provide services in computer science, transport, and operations research where various entities such as data, objects, persons, or events are stored and held to be processed later. In these contexts, the queue performs the function of a buffer.

Queues are common in computer programs, where they are implemented as data structures coupled with access routines, as an abstract data structure or in object-oriented languages as classes. Common implementations are circular buffers and linked lists.

Contents

Representing a queue

In each of the cases, the customer or object at the front of the line was the first one to enter, while at the end of the line is the last to have entered. Every time a customer finishes paying for their items (or a person steps off the escalator, or the machine part is removed from the assembly line, etc.) that object leaves the queue from the front. This represents the queue “dequeue” function. Every time another object or customer enters the line to wait, they join the end of the line and represent the “enqueue” function. The queue “size” function would return the length of the line, and the “empty” function would return true only if there was nothing in the line.

Queue implementation

Theoretically, one characteristic of a queue is that it does not have a specific capacity. Regardless of how many elements are already contained, a new element can always be added. It can also be empty, at which point removing an element will be impossible until a new element has been added again.

Fixed length arrays are limited in capacity, and inefficient because items need to be copied towards the head of the queue. However conceptually they are simple and work with early languages such as FORTRAN and BASIC which did not have pointers or objects. Most modern languages with objects or pointers can implement or come with libraries for dynamic lists. Such data structures may have not specified fixed capacity limit besides memory constraints. Queue overflow results from trying to add an element onto a full queue and queue underflow happens when trying to remove an element from an empty queue.

A bounded queue is a queue limited to a fixed number of items.

There are several efficient implementations of FIFO queues. An efficient implementation is one that can perform the operations—enqueuing and dequeuing—in O(1) time.

  • Linked list
    • A doubly linked list has O(1) insertion and deletion at both ends, so is a natural choice for queues.
    • A regular singly linked list only has efficient insertion and deletion at one end. However, a small modification—keeping a pointer to the last node in addition to the first one—will enable it to implement an efficient queue.
  • A deque implemented using a modified dynamic array

Queues and programming languages

Some languages, like Perl and Ruby, already have operations for pushing and popping an array from both ends, so one can use push and shift functions to enqueue and dequeue a list (or, in reverse, one can use unshift and pop), although in some cases these operations are not efficient.

C++'s Standard Template Library provides a "queue" templated class which is restricted to only push/pop operations. Since J2SE5.0, Java's library contains a Queue interface that specifies queue operations; implementing classes include LinkedList and (since J2SE 1.6) ArrayDeque. PHP has an SplQueue class.

See also

References

General
  • Donald Knuth. The Art of Computer Programming, Volume 1: Fundamental Algorithms, Third Edition. Addison-Wesley, 1997. ISBN 0-201-89683-4. Section 2.2.1: Stacks, Queues, and Deques, pp. 238–243.
  • Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, Second Edition. MIT Press and McGraw-Hill, 2001. ISBN 0-262-03293-7. Section 10.1: Stacks and queues, pp. 200–204.
  • William Ford, William Topp. Data Structures with C++ and STL, Second Edition. Prentice Hall, 2002. ISBN 0-13-085850-1. Chapter 8: Queues and Priority Queues, pp. 386–390.
  • Adam Drozdek. Data Structures and Algorithms in C++, Third Edition. Thomson Course Technology, 2005. ISBN 0-534-49182-0. Chapter 4: Stacks and Queues, pp. 137–169.
Citations

External links

Paul E. Black, Bounded queue at the NIST Dictionary of Algorithms and Data Structures.

Personal tools
  • Log in / create account
Namespaces

Variants
Actions