Streaming algorithm
In computer science, streaming algorithms are algorithms for processing data streams in which the input is presented as a sequence of items and can be examined in only a few passes (typically just one). These algorithms have limited memory available to them (much less than the input size) and also limited processing time per item.
These constraints may mean that an algorithm produces an approximate answer based on a summary or "sketch" of the data stream in memory.
Contents
History
An early theoretical foundation of streaming algorithms for data mining, pattern discovery and machine learning was developed in 1990 by a group at Johns Hopkins University. The theoretical model produces trade-offs between available memory and the number of passes through a stream of data in the form of labelled samples. The paper by Heath, Kasif, Kosaraju and Salzberg and Sullivan was published in AAAI 1991 [1] and proved lower and upper bounds for segmenting two class samples in one dimension, and extensions to learning classical "concepts" such as hyper-rectangles (bumps in statistics) and decision trees in high dimensions. The work was a chapter in David's Heath PhD thesis at Johns Hopkins University. Though streaming algorithms had already been studied by Munro and Paterson[2] as well as Flajolet and Martin,[3] the field of streaming algorithms was first formalized and popularized in a paper by Noga Alon, Yossi Matias, and Mario Szegedy.[4] For this paper, the authors later won the Gödel Prize in 2005 "for their foundational contribution to streaming algorithms." There has since been a large body of work centered around data streaming algorithms that spans a diverse spectrum of computer science fields such as theory, databases, networking, and natural language processing.
Semi-streaming algorithms were introduced in 2005 as an extension of streaming algorithms that allows for a constant or logarithmic number of passes over the dataset [1].
Models
In the data stream model, some or all of the input data that are to be operated on are not available for random access from disk or memory, but rather arrive as one or more continuous data streams.
Streams can be denoted as an ordered sequence of points (or "updates") that must be accessed in order and can be read only once or a small number of times.
Much of the streaming literature is concerned with computing statistics on frequency distributions that are too large to be stored. For this class of problems, there is a vector (initialized to the zero vector
) that has updates presented to it in a stream. The goal of these algorithms is to compute functions of
using considerably less space than it would take to represent
precisely. There are two common models for updating such streams, called the "cash register" and "turnstile" models.[5]
In the cash register model each update is of the form , so that
is incremented by some positive integer
. A notable special case is when
(only unit insertions are permitted).
In the turnstile model each update is of the form , so that
is incremented by some (possibly negative) integer
. In the "strict turnstile" model, no
at any time may be less than zero.
Several papers also consider the "sliding window" model. In this model, the function of interest is computing over a fixed-size window in the stream. As the stream progresses, items from the end of the window are removed from consideration while new items from the stream take their place.
Besides the above frequency-based problems, some other types of problems have also been studied. Many graph problems are solved in the setting where the adjacency matrix or the adjacency list of the graph is streamed in some unknown order. There are also some problems that are very dependent on the order of the stream (i.e., asymmetric functions), such as counting the number of inversions in a stream and finding the longest increasing subsequence.
Evaluation
The performance of an algorithm that operates on data streams is measured by three basic factors:
- The number of passes the algorithm must make over the stream.
- The available memory.
- The running time of the algorithm.
These algorithms have many similarities with online algorithms since they both require decisions to be made before all data are available, but they are not identical. Data stream algorithms only have limited memory available but they may be able to defer action until a group of points arrive, while online algorithms are required to take action as soon as each point arrives.
If the algorithm is an approximation algorithm then the accuracy of the answer is another key factor. The accuracy is often stated as an approximation meaning that the algorithm achieves an error of less than
with probability
.
Applications
Streaming algorithms have several applications in networking such as monitoring network links for elephant flows, counting the number of distinct flows, estimating the distribution of flow sizes, and so on.[6] They also have applications in databases, such as estimating the size of a join[citation needed].
Some streaming problems
Frequency moments
The th frequency moment of a set of frequencies
is defined as
.
The first moment is simply the sum of the frequencies (i.e., the total count). The second moment
is useful for computing statistical properties of the data, such as the Gini coefficient of variation.
is defined as the frequency of the most frequent item(s).
The seminal paper of Alon, Matias, and Szegedy dealt with the problem of estimating the frequency moments.
Heavy hitters
Find the most frequent (popular) elements in a data stream. Some notable algorithms are:
- Karp-Papadimitriou-Shenker algorithm
- Count-Min sketch
- Sticky sampling
- Lossy counting
- Sample and Hold
- Multi-stage Bloom filters
- Count-sketch
- Sketch-guided sampling
Event detection
Detecting events in data streams is often done using an heavy hitters algorithm as listed above: the most frequent items and their frequency are determined using one of these algorithms, then the largest increase over the previous time point is reported as trend. This approach can be refined by using exponentially weighted moving averages and variance for normalization.[7]
Counting distinct elements
Counting the number of distinct elements in a stream (sometimes called the moment) is another problem that has been well studied. The first algorithm for it was proposed by Flajolet and Martin. In 2010, D. Kane, J. Nelson and D. Woodruff found an asymptotically optimal algorithm for this problem.[8] It uses O(ε^2 + log d) space, with O(1) worst-case update and reporting times, as well as universal hash functions and a r-wise independent hash family where r = Ω(log(1/ε)/ log log(1/ε)) ..
Entropy
The (empirical) entropy of a set of frequencies is defined as
, where
.
Estimation of this quantity in a stream has been done by:
- McGregor et al.
- Do Ba et al.
- Lall et al.
- Chakrabarti et al.
Online learning
Learn a model (e.g. a classifier) by a single pass over a training set.
Lower bounds
Lower bounds have been computed for many of the data streaming problems that have been studied. By far, the most common technique for computing these lower bounds has been using communication complexity.
See also
Notes
- ^ "Learning Nested Concept Classes With Limited Storage".
- ^ Munro & Paterson (1980)
- ^ Flajolet & Martin (1985)
- ^ Alon, Matias & Szegedy (1996)
- ^ Gilbert et al. (2001)
- ^ Xu (2007)
- ^ Schubert, E.; Weiler, M.; Kriegel, H. P. (2014). SigniTrend: scalable detection of emerging topics in textual streams by hashed significance thresholds. Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '14. pp. 871–880. doi:10.1145/2623330.2623740. ISBN 9781450329569.
- ^ Kane, Nelson & Woodruff (2010)
References
- Alon, Noga; Matias, Yossi; Szegedy, Mario (1999), "The space complexity of approximating the frequency moments", Journal of Computer and System Sciences 58 (1): 137–147, doi:10.1006/jcss.1997.1545, ISSN 0022-0000. First published as Alon, Noga; Matias, Yossi; Szegedy, Mario (1996), "The space complexity of approximating the frequency moments", Proceedings of the 28th ACM Symposium on Theory of Computing (STOC 1996), pp. 20–29, doi:10.1145/237814.237823, ISBN 0-89791-785-5.
- Babcock, Brian; Babu, Shivnath; Datar, Mayur; Motwani, Rajeev; Widom, Jennifer (2002), "Models and issues in data stream systems", Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS 2002) (PDF), pp. 1–16, doi:10.1145/543613.543615.
- Gilbert, A. C.; Kotidis, Y.; Muthukrishnan, S.; Strauss, M. J. (2001), "Surfing Wavelets on Streams: One-Pass Summaries for Approximate Aggregate Queries" (PDF), Proceedings of the International Conference on Very Large Data Bases: 79–88.
- Kane, Daniel M.; Nelson, Jelani; Woodruff, David P. (2010), An optimal algorithm for the distinct elements problem, PODS '10, New York, NY, USA: ACM, pp. 41–52, doi:10.1145/1807085.1807094, ISBN 978-1-4503-0033-9.
- Karp, R. M.; Papadimitriou, C. H.; Shenker, S. (2003), "A simple algorithm for finding frequent elements in streams and bags", ACM Transactions on Database Systems 28 (1): 51–55, doi:10.1145/762471.762473.
- Lall, Ashwin; Sekar, Vyas; Ogihara, Mitsunori; Xu, Jun; Zhang, Hui (2006), "Data streaming algorithms for estimating entropy of network traffic", Proceedings of the Joint International Conference on Measurement and Modeling of Computer Systems (ACM SIGMETRICS 2006) (PDF), doi:10.1145/1140277.1140295.
- Xu, Jun (Jim) (2007), A Tutorial on Network Data Streaming (PDF).
- Heath, D., Kasif, S., Kosaraju, R., Salzberg, S., Sullivan, G., "Learning Nested Concepts With Limited Storage", Proceeding IJCAI'91 Proceedings of the 12th international joint conference on Artificial intelligence - Volume 2, Pages 777-782, Morgan Kaufmann Publishers Inc. San Francisco, CA, USA ©1991
External links
- Princeton Lecture Notes
- Streaming Algorithms for Geometric Problems, by Piotr Indyk, MIT
- Dagstuhl Workshop on Sublinear Algorithms
- IIT Kanpur Workshop on Data Streaming
- List of open problems in streaming (compiled by Andrew McGregor) from discussion at the IITK Workshop on Algorithms for Data Streams, 2006.
- StreamIt - programming language and compilation infrastructure by MIT CSAIL
- IBM Spade - Stream Processing Application Declarative Engine
- IBM InfoSphere Streams
- Tutorials and surveys
- Data Stream Algorithms and Applications by S. Muthu Muthukrishnan
- Stanford STREAM project survey
- Network Applications of Bloom filters, by Broder and Mitzenmacher
- Xu's SIGMETRICS 2007 tutorial
- Lecture notes from Data Streams course at Barbados in 2009, by Andrew McGregor and S. Muthu Muthukrishnan
- Courses